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We consider a metric-affine gravitational framework in which the dynamical 
fields are the spin structures, the general linear connections, and the Dirac fermion 
fields. Using a spin structure and a linear connection on the world manifold, we 
construct a principal connection on the spinor bundle. By applying general ideas 
concerning the conservation laws in the Lagrangian approach to field theory, we 
examine the corresponding conserved currents. The main result is that the currents 
associated with infinitesimal vertical (internal) transformations of the covariance 
group are shown to vanish identically. It follows that to every vector field on 
the world manifold there corresponds a well-defined current, the stress-energy- 
momentum of the fields. It turns out that the fermion fields do not contribute at all 
to the superpotential terms. Actually the expression we get for the superpotential 
generalizes the well-known expression obtained by Komar. 

I. INTRODUCTION 

It is well known (Goldberg, 1980; Fletcher, 1960; Giachetta and Sarda- 
nashvily, 1995a,b) that all conservation laws 

OxV x = 0 (1) 

which take place in generally covariant theories are strong laws, that is, when 
the field equations are satisfied, the current V ~ can be written as 

V ~ = ~ U  ~ (2) 

where the skew-symmetric tensor density U ~ is called the superpotential. 
As an example, in the purely metric Einstein gravitation theory (Novotn3~, 
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1984), the Einstein-Hilbert Lagrangian density LEn = x/r~R leads to the 
well-known Komar superpotential (Komar, 1959) 

U~(~) = x / - ~ ( ~  g~  _ ~x g~)  (3) 

where ~ is a vector field on the world manifold X and the subscript ;or denotes 
covariant differentiation with respect to the Levi-Civita connection. 

Recently, it was shown (Borowiec et al., 1994) that the superpotential 
(3) has a kind of universal property, in the sense that the stress-energy- 
momentum tensor of any Lagrangian density depending on a metric and a 
symmetric connection through the scalar curvature reduces to the Komar 
superpotential. Giachetta and Sardanashvily (1995c) extended this result to 
the framework of the metric-affine gravitation theory in which the general 
linear connections replace the symmetric connections. In particular, it has 
been shown that a generally covariant Lagrangian density L leads to a current 
which is brought into the form (2) with 

UX~(~) = 7r,~B~x(V~ + T~,~  ~) (4) 

Here V is the covariant derivative with respect to the linear connection K, T 
is the torsion of K, and 

~r ~X~ = OLIOk~Bx,~ 

are the momenta corresponding to the connection variables. This is a general- 
ized Komar superpotential. Note that in the case of the Einstein-Hilbert 
Lagrangian density LEH, we have 

and the torsion vanishes. Hence (4) recovers the Komar superpotential (3). 
The present paper is concerned with the conservation laws and the 

energy-momentum superpotentials in gravitation theories. We consider a met- 
ric-affme framework where the dynamical fields are the spin structures, the 
general linear connections on the word  manifold X, and the Dirac fermion 
fields. We show that the choice of a spin structure and a linear connection 
on X allows the construction of a covariant derivative of fermion fields. 
Using this covariant derivative, we are able to write a Lagrangian density of 
fermion fields. We also consider a Lagrangian density of the gravitational 
fields. The total Lagrangian is then taken to be the sum of the two Lagrangians 
and is assumed to be generally covafiant with respect to the group AUT(S(X)) 
of principal automorphisms of the spin bundle S(X). 

The analysis of these questions is based on thef irst  variational formula  
in Lagrangian field theory (Giachetta and Sardanashvily, 1995a; Mangiarotti 
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and Modugno, 1983). In accordance with this formula, the invariance of a 
Lagrangian density under a general covariance group leads to conservation 
laws of currents which can be brought into the form of superpotentials. We 
show that the fermion fields do not contribute to the energy-momentum 
superpotential, which has exactly the form given in (4). Hence, one can 
think of the generalized Komar superpotential as being the universal energy- 
momentum superpotential of gravitational theories. 

The organization of the paper is as follows. In Section 2 we recall the 
main facts about the Lagrangian formalism of field theory in jet bundle terms. 
Here the most important formula is the first variational formula of the calculus 
of variations, which plays a fundamental role in the study of symmetries and 
conservation laws of physical systems. 

In Section 3 we introduce the configuration bundle of the metric-affine 
gravity interacting with fermion fields. Although we are talking about the 
metric-affine theory, we do not regard the metric of the world manifold as 
a proper dynamical field. Actually, in our construction the spin structures are 
taken to be true dynamical fields. However, every spin structure determines 
a metric on the world manifold X. The most important point in this section 
is the construction of the covariant derivative of spinor fields using a spin 
structure and a linear connection on X. 

In Section 4 we describe the actions of AUT(S(X)) on the various bundles 
involved in the theory. We also find the expression of the vector fields 
corresponding to the infinitesimal version of  these actions. 

Finally, in Section 5 we consider a Lagrangian density which has the 
group AUT(S(X)) of principal automorphisms of the spin bundle S(X) as the 
general covariance group. We find the corresponding currents and show that 
they can be brought into the form of a generalized Komar superpotential. 

2. CALCULUS OF VARIATIONS 

In this section we briefly introduce the basic features of the geometric 
approach to Lagrangian field theory. Accordingly, classical fields are repre- 
sented by sections of a bundle Y ---) X over a world manifold X and their 
dynamics is phrased in terms of jet manifolds (Sardanashvily, 1993). We 
restrict ourselves to the first-order Lagrangian formalism, since this is enough 
for our purposes. Here Y is the configuration space of fields described by 
sections s: X ~ Y, whereas the first-order jet manifold j i y  of Y ---) X is the 
phrase space. 

Roughly speaking, one can say that the k-order jet manifold J~'Y of a 
bundle Y ---) X comprises the equivalence classes j~s, x e X, of sections s: 
X ~ Y identified by the first k + 1 terms of their Taylor series at a point x. 
Let (x x, yi) be fibered coordinates on Y, with 1 ~ h --< m = dim X and 1 <- 



128 Giachetta and Mangiarotti 

i - n, m + n = dim Y. The induced coordinates on j t y  are denoted by (x • 
yi, y~). Their meaning is clear; given a section s: X ~ Y, let j ls :  X ~ J~Y  
denote its first-order jet extension. Then we have 

yi o s = s i, y~ o j l s  = Oxs i 

As usual, the coordinate fields associated with (x x, y", yix) are denoted by (a• 
oi, oD. 

A basic operation on jet spaces is the following. Let 

U: Y --+ T~, u = uX(x)c3x -F ui(X, y)O i 

be a projectable vector field on Y representing an infinitesimal transformation 
of  both the field and the world manifold variables yi and x a, respectively. 
Then u can be lifted to a (projectable) vector field ~ on j i y  given by 

-~: j i y  ~ T j i y  

where 

~-  U k 0 X  -I'- uiOi + UkOii h 

uix = Jxu  i - ykOxu"  

(5) 

J~ = o~ + y { o j  + . . .  

is the total derivative with respect to x x. 
Let 

m 

~ :  j 1 y  __~ ^ T*X (6) 

= L(x x, yi, y~)to, to = dx I ^ . . .  ^ dx = 

be a first-order Lagrangian density. Then we have the following objects 
naturally associated with it. The P o i n c a r d - C a r t a n f o r m  

m 

E(~) :  j 1 y  __~ A T*Y  (7) 

E ( ~ )  = ~ + 0 x L(dy' - y~dx  ~) ^ coX, tox = Ox Jto 

which is the unique Lepagian (Cartan) form equivalent to ~ in the first-order 
case. The Euler -Lagrange  operator 

m 

%(~): j 2 y  ~ V*Y | ^ T*X (8) 

%(~)  = 8iL dy i | to, 8iL = OiL - Jx(O/XL) 

whose kernel consists of critical sections s: X ~ Y of the variational problem 
defined by the Lagrangian density ~ .  
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If u: Y ~ TY is a projectable vector field, we define the corresponding 
current to be 

m - I  

V(,~, u): jly_...~ ^ T'X, V(~, u) = VX(~, u)tox (9) 

VX(,~/~, u) = cg~L(u i - y~u ~) + uXL 

This is defined as the horizontal projection of the (m - 1)-form u J E(~) .  
There are different methods to discover differential conservation laws 

in Lagrangian field theories (Fletcher, 1960). Here we are concerned with 
the so-called symmetry method. Let u: Y ~ TY be a projectable vector field 
on Y. By computing the Lie derivative L ~  of the Lagrangian density ~ by 
the lift of u, we find the relation 

L ~  = Uv J %(~) + dnV(~, u) (10) 

This is a basic formula known as thefirst variational formula of the calculus 
of variations. On the right-hand side of (10), 

uv: jiy_._~ VY,, U v = (U  i - -  y i x u X ) O  i 

is the vertical part of the vector field u and 

m 

dHV(~, u): j2y  ~ A T'X, 

JxVX(~, u)to 

is the horizontal derivative of V(~, u). 
Now assume that the vector field u is an infinitesimal symmetry transfor- 

mation of the Lagrangian density ~ ,  i.e., 

L ~  = 0 (11) 

Then the variational formula (10) yields the conservation law 

0x(VX(,~, u)ojls)  = 0 (12) 

when the field equations %(~) oj2s = 0 are satisfied. These are called weak 
conservation laws. However, if the field u is an infinitesimal transformation 
belonging to a function group which is a symmetry group of the Lagrangian 
density ~ ,  such as gauge theories and general relativity, then the current 
V(~, u) takes the form 

V(~, u) = W(~E, u) + dHU(~, u) (13) 

where W(,~, u) vanishes on solutions of the field equations and 

m - 2  

U(~, u): jly___~ ^ T*X 
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is a (m - 2)-form called the superpotential. The corresponding conservation 
law (12) is called a strong conservation law. 

3. METRIC-AFFINE GRAVITY: KINEMATICS 

Hereafter, the 4-dimensional base manifold X is assumed to satisfy 
the well-known topological conditions which guarantee the existence of a 
Lorentzian metric and a spin structure. We summarize these conditions by 
assuming that the manifold X is not compact and its tangent bundle is trivial. 
We call X the world manifold. The Lorentzian metrics and the general linear 
connections on X are called the world metrics and the world connections, 
respectively. 

We use three kinds of indices. Greek indices label points of the world 
manifold. Lowercase Latin indices are reserved for quantities defined on the 
Minkowski space-time. Both kinds of indices range from 0 to 3. Uppercase 
Latin indices are used for the spinor fields and range from 1 to 4. 

In the gauge gravitation theory, gravity is described by pairs (h, Ah) of 
gravitational fields h and associated Lorentz connections A h (Sardanashvily 
and Zakharov, 1992). The Lorentz connection A h is usually used to construct 
the covariant derivative of Dirac fermion fields in the presence of the gravita- 
tional field h. On the other hand, in the metric-affine gravitation theory (Hehl 
et al., 1995; Aringazin and Mikhailov, 1991; Tucker and Wang, 1995) the 
connection is no longer assumed in advance to be a Lorentz connection, 
though this may result from the field equations. Hence, the problem of 
constructing a covariant derivative of spinor fields arises. 

Let L(X) be the principal fiber bundle (PFB) of oriented linear coframes 
on X. In gravitation theory, its structure group GL+(4, R) reduces to the 
connected Lorentz group L C SO(l, 3). This means that there exists a reduced 
subbundle Lh(X) of L(X) whose structure group is L. As is well known 
(Kobayashi and Nomizu, 1963), there is a 1:1 correspondence between the 
reduced L-subbundles Lh(X) of L(X) and the Lorentzian metrics on X of 
signature (1, - 1, - 1, - 1). 

Now we give the following definition (Van der Neuvel, 1994). 

Definition 3.1. Let p: Ls ---> L be the universal covering morphism, where 
Ls = SL(2 ,  C). A spin structure on X consists of a P F B  ~ :  S(X) --> X with 
structure group Ls and a map h: S(X) --> L(X) satisfying the following 
properties: 

(i) h o RA ----- Rp(A) o h, VA ~ L~. 
( i i ) ~ o h  = a%. 

Notice that a spin structure determines a reduction of L(X) to an L- 
subbundle Lh(x) and, hence, a metric g on X. This subbundle is the image 
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of S(X) under h: S(X) --, L(X). Hereafter, we choose a PFB "rrs: S(X) ---) X 
and consider the spin structures provided by all the morphisms h: S(X) 
L(X) which satisfy the properties (i) and (ii) of Definition 3.1. 

These morphisms can also be seen as sections of a fiber bundle S ---) X 
defined by 

S = U Sx (14) 
x ~ X  

Sx = {hx: S(X)x --o L(X)xlhx(p'A)  = hx(p)'p(A), Vp ~ S(X)x, a ~ Lx} 

Fibered coordinates on S are introduced as follows. Let cr: U --.-) S(X) and 
(dxX): U --~ L(X) be local gauges over the same neighborhood U of X. Then, 
for any h, e S with x ~ U, we have 

hx o or(x) = (ha), h a = h~ dx x (15) 

where the matrix (h"x) ~ GL§ R). Hence the coordinates of hx are taken 
to be (x x, hax). 

The world connections are principal connections on the PFB L(X). It 
follows that there is a 1:1 correspondence between world connections and 
global sections of the quotient bundle (Giachetta and Mangiarotti, 1990) 

C = J~L(X)IGL+(4, R) ---) X (16) 

With respect to a holonomic gauge (dxX): U ~ L(X), the bundle C is coordinat- 
ized by (x x, k"ax) so that, for any section K: X ---) C, 

K"~x = k~x o K 

and the connection parameters on T'X, i.e., 

Vx d.x" = K~13x d ~  (17) 

There are different ways to introduce Dirac fermion fields. Here we 
follow the algebric approach. Let (M, "q) be a Minkowski space, with "q = 
diag(1, - 1 ,  - 1 ,  -1 ) ,  and Cll,3 the complex Clifford algebra generated by 
elements of M. The spinor space V is defined to be a minimal left ideal of 
Cl~,3 on which this algebra acts on the left. We have a representation 

~/: M | V ---) V (18) 

of elements of the Minkowski space M by Dirac ~/-matrices on V and the 
spinor representation 

I.z: Ls ---) GL(V) (19) 

Then, the spinor bundle 

F = (S(X) • V)IL~ 



132 Giachetta and Mangiarotti 

is associated with the PFB "trs: S(X) ~ X. Sections ~: X ~ F represent Dirac 
fermion fields. With respect to a gauge or: U --.-> S(X) and a basis (eA) of V, 
the induced fibered coordinates on F are denoted by (x x, yA). 

We take the configuration space of the metric-affine gravitation theory 
in interaction with fermion fields to be the fibered product bundle 

Q = S • C •  F ---> X (20) 

Let us consider a bundle of complex Clifford algebras Cll.3 over X whose 
structure group is the Clifford group of invertible elements of C/i,3. It has 
the subbundle YM ---> X of Minkowski spaces of generating elements of C/1,3. 
To describe Dirac fermion fields on a world manifold X, one must require 
YM tO be isomorphic to the cotangent bundle T*X of X. It takes place if there 
exists a reduced L-subbundle Lh(X) of L(X) such that 

YM =" (Lh(X) X M)IL 

The representation (18) satisfies the following equivariance property: 

~ / (p (A)-~I~(A)  -v) = l~(A)'(~/(~| VA E L ,  ~ e M, v E V 

(20 

Owing to this property, the map ~/ goes to the quotient and defines the 
representation 

~lh: T*X | F = (S(X) X M | V)ILs ~ (S(X) • V)/Ls = F (22) 

of cotangent vectors to the world manifold X by Dirac ~/-matrices on elements 
of the spinor bundle F. If cr: U --> S(X) is a local gauge, (ea) is a basis of 
V, ($A) is the induced basis of the free module of fermion fields over U, and 
(h a) = h o o-: U --> L(X) is the image of o- under the spin structure h, then 
we have 

~/h( dxk @ ea) = [o-, hXa'yaBA] (23) 

where dx x = hXa ha and the square bracket denotes equivalence classes in the 
quotient space. 

We shall say that sections of the spinor bundle F --> X describe Dirac 
fermion fields in the presence of the world metric induced by the spin structure 
h. Indeed, given a principal connection A on F, let V be the corresponding 
covariant differential operator. Then, using the representation (22), one can 
construct the Dirac operator 

Dh = ~/h o V: J t F  --> T*X | F --> F (24) 

y Ao D h = hXa'~'An(y~ -- 1A~blabnCY c) 
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on the spinor bundle F. Here A~, b = -A~ ~ are the connection parameters of 
A (which are opposite in sign to the gauge potentials) and 

= 

are the generators of  the spinor group L~. Diferent  spin structures h and h' 
yield nonequivalent representations ~h and ~/h'. It follows that a Dirac fermion 
field must be regarded only in a pair with a certain spin structure. 

In order to write the Lagrangian density of fermion fields in the metric- 
affine framework, we have to construct a principal connection on F starting 
from a world connection and a spin structure. Let co: L(X) ---> T*L(X) | gl(4, 
R) be a connection one-form and h: S(X) --> L(X) a spin structure. Note that 
gl(4, R) = e + m (direct sum), where e is the Lie algebra of L and m is a 
subspace of  gi(4, R) such that A - m .  A-~ C m, for any A ~ L. Then, by a 
well-known theorem (Kobayashi and Nomizu, 1963, Proposition 6.4, p. 83), 
the pullback by h of the/?-component o '  of  co defines a principal connection 
O~h = h*o '  on S(X). This is the principal connection on F we were looking for. 

The connection parameters of Oh Can be found as follows. The coordinate 
expression of  o in a bundle chart (x x, hax)  o f  L ( X )  with respect to a holonomic 
coframe (dx x) is 

Oab : hae,(dh~ b - K'~• dx x) (25) 

where the connection parameters K"~x are defined in (17). Projecting to on 
the Lie algebra of L leads to 

1 a _ b c  0 tab] = -s ,~'1 - ht',~laC)(dh'~c - K~ dx x) (26) 

Now let or: U ---> S(X) be a local gauge and let h o o- = ( ha ) ,  h a = hax  d x  x. 

It follows that the connection parameters of  Oh are given by 

A~ b = - -  l (haa 'qbc - -  hbc~'qac)( OxhCt c - K'~xh~c) (27) 

4. BASIC REPRESENTATIONS 

Let Diff(S(X)) be the group C ~ diffeomorphisms of  S(X). We shall 
consider the following infinite-dimensional groups: 

AUT(S(X)) = {~ ~ Diff(S(X))IdP(p.A) = dp(p).A Vp ~ S(X), A E L~} 

Aut(S(X)) = {~ ~ AUT(S(X))I~  covers the identity of X} 

Diff(X) = {~b: X ---> Xl~b is a C~-diffeomorphism} 

We denote by ~ :  AUT(S(X)) ---> Diff(X) the group morphism that takes an 
automorphism of S(X) to its induced diffeomorphism of X. Of course, its 
kernel  is the subgroup Aut(S(X)). 
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A principal automorphism ap E AUT(S(X)), with r = dO, induces 
automorphisms dO, aps, ape, and ap~ of the bundles L(X), S, C, and F, all 
covering dO. We begin by defining do as 

dp((ha)) = ((TdO-l)*(ha)), '~(h a) ~ L(X) (28) 

One can easily verify that $ is equivariant with respect to the right action 
of GL+(4, R) on L(X). Due to this property, the jet extension jldO: j1L(X) 
---> JlL(X) of $ goes to the quotient C = JIL(X)/GL§ R) and defines 
an automorphism 

doc: C ---> C (29) 

By recalling that F = (S(X) X V)IL~ is a bundle associated with S(X), 
we define 

apt:: F ---> F 

% ( [ p ,  v]) = [ap(p), v], 

Finally, we define 

aps: S --> S 

ai, s(hx) = ~, o hx o ap-~ ~ S,<x), 

(30) 

Vp ~ S(X), v e V 

vh,, ~ sx 

(31) 

We shall also consider the infinitesimal version of these actions of 
AUT(S(X)) on S, C, and F. Let TLsS(X) = TS(X)ILs be the quotient of the 
tangent bundle TS(X) by the spinor group Ls. This is a vector bundle over 
X whose sections ~: X --> TL, S(X) are L:invariant vector fields on S(X). In 
particular, they are projectable fields, that is, every section ~: X --> TLsS(X) 
induces a vector field ~x on X. A subbundle of TLsS(X) is VL, S(X) = VS(X)I 
Ls, where VS(X) C TS(X) is the bundle of  vertical vectors. Sections ~: X ---> 
VLsS(X) of this bundle are L:invariant vertical vector fields on S(X) (Giachetta 
and Mangiarotti, 1990). 

Let ~: X --> TL~S(X) be a section. Its flow apt, with Ors(apt) = do,, defines 
a one-parameter group of principal automorphisms of S(X) covering dot 
Diff(X). Then the corresponding one-parameter groups of  automorphisms 
induced on S, C, and F define vector fields ~s, ~c, and ~F on S, C, and F, 
respectively, and hence on the configuration space Q. If 

is the coordinate expression of the section ~: X --~ TL, S(X), where (eab) is a 
basis of the Lie algebra of  L, then their local expressions are 
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~s: S ---> TS 

~S = ~Xc~ + (haa0a~ x - hXb~ba) C9 
OhXa 

~c: C --> TC 

c9 
~c = {xa~ + (a, .{ ~ - k a ~ a . ~  ~ - k x . . a ~  ~ + k~..a.~ x) akX" 

~F: F --'> TF 

1 0 1 0 
~F = ~kak q- -2 ~abIa/BY B ~ + "2 ~ab-yAI+abAB --ay B 

Later we shall use the compact notation yi = kXl~v and 

~C ~h'ah q- (uikl~Val~v~ x at- iX P, k 
= u~ax~ ) aY i 

Finally, we have 

~Q: Q----> TQ 

~Q = ~xa x + (h'~,,O,,~ x - hXb~ba) ~ + (uix~'O~,~ x + U~OX~ ~) ~y/ (32) 

1 _k_a + 1 
"~ 2 ~ abtabAByB OyA 2 ~a%[~bAB ayS 

5. SYMMETRIES AND CONSERVATION LAWS 
m 

Let us consider a first-order Lagrangian density ~ :  J~Q --> A T*X on 
the configuration space Q, (20), which is the sum of a Lagrangian density 
~s fermion fields and a Lagrangian density ~g of the metric-affine gravity. 

To construct ~ f  we use the representation (22) and the principal connec- 
tion (27). Moreover, we need a real-valued fiber metric k on the spinor bundle 
F. We take it to be that induced by the L,-invariant metric/~: V • V ---> R 
given by 

Then, we define ~s as 

1 
~(~ w) = ~ (w+~~ + v+~~ 

~:(h ,  K, O) = [k(iDht~, t~) - ink(O, 0)]l-Lh (33) 
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/ n  

where ~h: X --~ ^ T*X is the metric volume form induced by the spin structure 
h. Its local expression is 

,~f = Lfo)  

i 
/ . . :  = _ -~rtk lab CY I (34) 

-(Yax 1 + c  o n - ~A • A)('Y ~/ )AnY ] det(hax) 

- mYA(~/~ s det(h"x) 

where the connection parameters A~ b are given in (27) and ~/• = ~tahxa. 
One can easily verify that 

0Lf + 0Lf = 0  (35) 
.9~, ,  OkX,,,. 

Hence, the Lagrangian density (33) depends only on the torsion of  the world 
connection K. In particular, it follows that if K is the Levi-Civita connection 
of the gravitational field associated with the spin structure h, then ~ f  takes 
the form of the familiar Lagrangian density of fermion fields in Einstein's 
gravitation theory. 

Now let h: X ~ S, K: X ---> C, and ~b: X ---) F be sections. For any tD 
AUT(S(X)), covering + E Diff(X), we define/~ = d~s o h o ~b - l , /~  = ~ c  

o K o ~b-1, and ~ = CI)r o ~ o ~b- i. Then, it is easily verified that the Lagrangian 
density (33) is generally covariant with respect to AUT(S(X)), that is 

~:(h, K, C~) = (d:-~)*~y(h, K, ~) (36) 

for any cI) ~ AUT(S(X)). It follows that, for any section ~: X ---) TL, S(X), 
the Lie derivative of ~ f  by the jet lift ~Q of the vector field (32) is equal to 
zero, i.e., 

L ~ f  = O. V~: X---) TL.S(X) (37) 

The Lagrangian density ~g of the metric-affine gravity is assumed to 
be of the form 

f~g --~ Lg(o 

Lg = f(gX~(h), R~ax~(K)) (38) 

where f is a scalar density, 

gX~ = hhahV.b ~ab (39) 

is the metric induced by the spin structure h and 
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R~f3x~ = k'~f3x,. - k'~3o.,x + ~,,xk"13~ - k%p.k"f3x 

is the curvature tensor of the world connection K. In other words, we suppose 
that ~g factorizes through the curvature tensor and the combination (39). 
Then, one can easily prove the relations 

"tr~ ~ = - ~ x  (40) 

O Lgl O k~f~ x = "tr ,~f~ X ~ k %~ ,, - "tr ,~'~ ~" " k f~,n, (41) 

We also assume that ~g is generally covariant, so that 

L~Q~g = O, V~: X---) TL~S(X) (42) 

Let us apply now the machinery of Section 2 to the Lagrangian density 
= ~g + ~f.  We get the current 

OLg 
- -  ) Vx(~s ~) = OY~ (u~VO[3~ + uif3,~Oo,~f3 i ~, 

+ cghac,X (hf3cOf ~a  - hraa~a c - h~,c,~3~f 3) 

I 

-t'- OYAh % ) 'B'ab A - -  Y A a ~  et 

+ + L:) 

In particular, if ~: X ---) VLf l (X)  is a vertical field, i.e., 

1 
= "~ ~abeab 

then the current (43) reduces to 

OLf 1 0 L f  
VX(~, ~) = -ahac,-----~x haa~ac + -~ ~ ~ a b l a : B :  

1 OLf eab.~.. I+B 
dr -2 ~YAx  ~ YBlab  A 

By explicit calculation we get 

i VX(~, ~) = - ~  [ya(~OTX)ABA~bcI,,bBcy c 

abc'~. + C 0 k A B Ix d - A,.  ycl~b A('Y 'Y ) BY ]h d~ 

i + ~ [YB('yO'c~)aA~blaAcy c -- (~O~lX)ncyC~abyAl+aAB] 

(43) 

(44) 
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where we have set Aa~ bc = l(ha "l) bc - -  hbv'qac). Since 
2 I~ 

Aa~bch~ d~dc = t ab 

the above expression vanishes identically. It follows that the currents associ- 
ated with vertical (internal) symmetries do not contribute to the general 
expression (43), which therefore takes the form 

OLg 
VX(~, ~) = ~Y~ (u~Of~v~ + u~O,~B _ y i ~ )  

+ c3hd,x (hl3cOB~ ~' - h'~ ,iv~B) 

a l l  . ~, OLf .,~ 
- O~ ya~ _ OyAX Ya~,{ + ~(Lg + Lf) (45) 

Due to the arbitrariness of the functions ~", the equalities (37) and (42) 
imply the conditions 

aL, u~ ~ OL~ OL. . OL~ 
~L~ + h"a-d-s ~ + ~ + J # :  ~ - y ' ~ -  = 0 

Oy'~ Oy~ 

. 01.~ h '~ OLf OLf 
~ L f  + h a ~ a  + a,l~ OhX ,~ hV'a'X Oh%,o, 

(46) 

and 

Substituting the terms 

Ot, 
~ L g  - y~ Oy~ 

~ L f -  h~a,x OhO, a-------~ - Y~x ~ - YAX a~A'-'~a 

from (46) and (47) into the conservation law (45), we find 

0Lg 
VX(~, ~) = Oy---~ (ui~'~cgr '~ + ui~O,~ f~) 

,~[ x OLg r f~Lg iK OLg~ 
-- ~ I h a ohaa + uha ~yi "-I'- J~ua"~-~] 

and 

oL~ . oL~ OLz 
+ u"~ ~y~ - y~ ~ - YAx 0YA----~ = 0 (47) 
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OLr hX OLy OLfl OLf hf3aOf3~ a _ ~a hXa + _ _  + uiXa 
+ Oh~,,~,x ~ a,p, Ohaa,o " Oy'] 

= OL__.:_~. ( Oyk (ui~'YO~'Y~et "~ ui~O~ -- ~etjp, ui~ Otg.] 
Oy'~] 

oL, ( oL, ) 
-- ~auiha~iL q- ~ hDaOf3~a - Jr OhOta,~] 

+ Or ' OLf _ ~,~hX~,/,L 
Oh'~,,,~ 

Let us introduce the symbol ~- to denote equalities valid only on solutions 
of the field equations. Then we have 

~aj~(uiXa OL.g I a[ OLf OL: hXa) 
OYk} Oh"a, f3 

Oh'~,~] 

Due to the relation 

0L~_ 0/~ 
OkX ~ OhX ~'~ h% (48) 

and (35), the last but one term of the above expression vanishes. Moreover, 
turning back to the tensorial notation, one can easily verify that 

OLglOy~u~'a = ,rr,tO, Ox 

OLxlOy~u~ '~ = -OLslOka,~ x - ~r ~ak~ ~ 

It follows that 

_ { OLg 
v~(~, 0 ~ a'~(~r~0~ ~) - a'~'rr~0~ ~ ~,0k~ + ~r~"Xk~)O"~ 

/OL~ ~ k ~  ) _  / . ~  OL I \  
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Ok~akc3Lg a f OLg \ ( Ohaa,ttJOLf 

J~[a-r~"~x(b,,~ ~ - k ~ , . ~ ) ]  - 8a~XL O ~  ~ + 0~1~ x 0~ ~ 

+ ~'aJ~d-~xJ [ OLg \ _ j~(~ahXa_ OhC~a.~, 

OLy [ OLg 
Jd~J~(a~r ~ - k%~r + ~ a~ ~ + r 

-- J~,(t" OLf 
k Ok~x] 

[ OL, \ ~ [ OLf \ 

j~[ar~x(a~ ~ - k%~)]  + ~J~ (8~L)  

y~[~r~-~(V.r . + T".~=)] 

where we have used (35), (40), and (48). 
It follows that fermion fields do not contribute to the superpotential in 

the metric-affine theory of gravity. The stress-energy-momentum conservation 
law comes to the form (2), where U is the generalized Komar superpo- 
tential (4). 
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